Beamsplitter — Vanguard of Modern Technology

Consumers are often unaware of the complexities of modern technology. The vast majority of smartphone users are unaware that a diffractive beamsplitter, makes up a key component of front-facing cameras in advanced smartphone models, such as the iPhone XS and XR. As we explained in an earlier blog post, this component plays a major role in the devices’ Dot Projector assembly, as well as the True Depth Camera system. Together, they enable the iPhone’s FaceID feature. Apple uses a variation of a Philips prism-cube beamsplitter.

Beamsplitters represent one of the most important members of the optical-component family and aid numerous operations in spectroscopy, fluorescence, photography, interferometry, biology, and security.

Anatomy of a Beamsplitter

The primary function of a beamsplitter is to separate a single beam of light into two parts, one reflected and one transmitted. The incident light is split at the surface which is usually set at some angle so the reflected and transmitted beams are separated. Any metal layer that forms a partially reflective mirror can serve as a beamsplitter, and many under the “plate beamsplitter” category are no more sophisticated than that.

The two beams that split from the original incident light will normally have constant values over a specified wavelength range. These are called neutral beamsplitters. Other types separate colors with the transmitted and reflected beams displaying different parts of the visible spectrum or split the visible region from the infrared as is done with hot and cold mirrors. Beamsplitters also affect the polarization of the incident light and this property can be used to make effective polarizers.

Let’s take a closer look at the various types of beamsplitters used in industrial and scientific applications.

Plate and cube beamsplitters: The most common type of beamsplitter consists of a single layer or multiple layers of dielectric materials on a suitable flat plate substrate. Normally used at a 45º angle of incidence, they are known by the ratio of reflected to transmitted light. Standard ratios include 30%R/70%T, 40%R/60%T and of course, 50%R/50%T.

Cube beamsplitters are formed by coating one or both hypotenuses of two prisms and joining them together using optical cement or epoxy resin, or by the optical contact method. If the prisms are of the right-angle type then the transmitted beam will be colinear with the incident beam, an advantage over the plate beamsplitter which will exhibit an offset equal to the thickness of the substrate. However, cube beamsplitters generally do not perform well over wide angles of incidence.

As with the plate beamsplitter, different splitting ratios are achievable. Further, spectral separation can also be produced. A common example can be found in TV cameras where specially designed coatings separate the red, green and blue color components of visible light into individual beams that are then focused onto the image sensors.

Polka-dot beamsplitter: So named because it is formed by depositing tiny dots of aluminum on glass or silica using a photolithography process. Polka-dot beamsplitters divide incident beams by reflecting some off of the aluminum dots and transmitting the remaining light through the non-aluminized portion. This results in a multiplicity of tiny light beams with a near-constant reflection to transmission ratio and minimal angle sensitivity.

Polka Dot Beamsplitter
Polka Dot Beamsplitter
Polka Dot Beamsplitter

Dichroic beamsplitter: In many scientific and electronics-industry applications, it is necessary to split an incident beam into two spectral bands — one transmitted, the other reflected — and maintain an extremely sharp slope of transition between the bands. These are called dichroic beamsplitters. Since they utilize dielectric materials, they carry the advantage of negligible optical loss compared to absorptive types of color separators. EMF, a leader in optical coating solutions, supplies cold mirrors, aka dichroic beamsplitters, used in Head-Up Display (HUD) assemblies to a global automotive components manufacturer based in Japan.

Transmission grating beamsplitter: Transmission-grating beamsplitters separate laser beams into multiple orders, all in visible wavelengths. When paired with the appropriate diffraction grating, a transmission grating beamsplitter will allow different power distributions and dispersions. While the splitter won’t operate at peak capacity if it’s not placed at the right diffraction angle for the beam’s specific wavelength, scientists or engineers can determine this using the standard grating equation for normal incident light: 1) sinα + sinβ = 10–6knλ.

Transmission Grating Beamsplitter
Transmission Grating Beamsplitter
Transmission Grating Beamsplitter

Importance of Quality Assurance with Beamsplitters

For beamsplitters to meet the challenging application requirements in aerospace, defense, and healthcare they must undergo a number of critical testing procedures ranging from atomic force and optical microscopy to diffraction grating efficiency measurements and accelerated environmental testing. Dynasil’s manufacturing facilities are ISO 9001:2015 certified to ensure that our procedures and products meet your highest quality standards.

The Dynasil Edge

Through our core belief in continuous research and innovation, close internal collaboration and industry-leading performance standards, Dynasil maintains a premier position in the optical coatings and components industry.

About Dynasil

Dynasil Corporation of America (NASDAQ: DYSL) develops and manufactures optics and photonics products, optical detection and analysis technology and optical components for the homeland security, medical and industrial markets. Combining world-class expertise in research and materials science with extensive experience in manufacturing and product development, Dynasil is selling and continuing to develop products for dual-mode radiation detection solutions for security and commercial applications and sensors for non-destructive testing. Dynasil has an impressive and growing portfolio of issued and pending U.S. patents. The Company is based in Newton, Massachusetts, with additional operations in Massachusetts, New Jersey, New York and the United Kingdom. More information about the Company is available at

A publicly-owned multinational corporation focused on cutting-edge research and commercial product development in photonics — materials, components & coatings.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store